Compartir

Investigadores del CONICET lograron describir mecanismos cruciales del proceso de maduración de los virus de dengue y del Zika en el interior de las células, un evento clave para la infección viral. El trabajo,  publicado en The Journal of Biological Chemistry, genera expectativas para el desarrollo futuro de antivirales efectivos contra esos patógenos que son transmitidos por el mosquito Aedes Aegypti.

Al igual que el nuevo coronavirus, los virus del dengue y Zika tienen en su interior una molécula de ARN (la parte más vulnerable del virus) que contiene la información genética para multiplicarse una vez que infectan a una célula. Para lograrlo, el material genético debe despojarse de un “escudo protector” formado por la proteína de cápside del virus, que actúa recubriendo al ARN para preservar su integridad. De esta forma el ARN atraviesa dos pasos cruciales: debe reclutarse (protegerse) para formar nuevos virus y liberarse para multiplicarse. Estos dos pasos se conocen como encapsidación y desnudamiento.

Durante la “encapsidación”, además de cubrirse con la proteína de cápside, el virus recluta lípidos que sirven como una segunda cubierta o barrera protectora. “En este trabajo estudiamos cómo son los procesos fisicoquímicos que permiten que el ARN del virus se asocie con los elementos de protección que constan de la proteína de capside y de los lípidos”, explica Andrea Gamarnik, investigadora superior del CONICET en el Instituto de Investigaciones Bioquímicas de Buenos Aires.

Gamarnik y otros colegas descubrieron que las proteínas de cápside de los virus de dengue y Zika pueden, de manera simultánea, empaquetar el ARN viral y unirse directamente a los lípidos de una estructura celular llamada “retículo endoplasmático” para así formar los nuevos virus que saldrán de la célula. “Esto es novedoso ya que soporta, y amplía, el rol de las proteínas de cápside no solo como partenaires del ARN, sino como directoras de la ubicación correcta del material genético a nivel subcelular para la formación de las nuevas partículas virales”, explica Ambroggio.

Los especialistas también comprobaron que ese proceso biológico tiene lugar en un medio que se puede denominar como una “nueva fase líquida”. “El acoplamiento de estas piezas (ARN, cápside y lípidos) ocurre en un medio celular de agua estabilizada, como si fueran ‘gotas’, en comparación con el agua del medio celular que rodea estas fases”, explica Guadalupe Costa Navarro, también autora del estudio y becaria doctoral del CONICET en el IIBBA.

“Estos estudios develan un blanco para controlar la infección. Considero que una buena terapia antiviral sería el desarrollo de moléculas que puedan de alguna manera contrarrestar la asociación descripta en nuestro estudio o sea impedir la formación de ese tipo de ‘gotas’«, subraya Ernesto Ambroggio, uno de los líderes del estudio e investigador del CONICET en el Centro de Investigaciones en Química Biológica de Córdoba.

Por su parte, Gamarnik resaltó que “conocer en detalle los mecanismos moleculares de multiplicación e infección del virus del dengue y zika es el camino para identificar estrategias innovadoras para el control viral”.

El estudio publicado es el fruto de un trabajo sinérgico que se desprende de unir distintas disciplinas científicas con un fin común. En este caso, los laboratorios, dirigidos por Gamarnik y Ambroggio, aunaron sus especialidades en virología molecular y biofísica de membranas, respectivamente, para estudiar un proceso fundamental en la multiplicación de dos virus que son un serio problema en Salud Publica.

Además de la pandemia de COVID-19, el dengue es otro de los mayores retos de la salud pública en Argentina y la región. En 2019, la Organización Panamericana de la Salud (OPS) informó más de 3 millones de casos de dengue en América Latina, el mayor número registrado en la historia para la región. Por otra parte, aunque después del brote epidémico en América en 2016-2017 el zika declinó de manera sensible, todavía se siguen estudiando las secuelas que dejó y no se puede descartar su reemergencia.

Comentar con Facebook